365488.com温馨提醒您关注浙江选调生考试备考资料:
在选调生考试行测科目中,工程问题是最常见的题型之一,而工程问题中最常见的就有多者合作问题。多者合作问题即多个人合作完成某一项或几项工程,这类题目中通常给出完成工程的几个时间,或者给出若干人的工作效率比,最后求合作情况。在多者合作问题中总会有两个以上的任意未知量,因而可用特值法来解题。下面中公浙江选调生考试网为大家进行解答。
1.多者合作问题常设总量为若干时间量最小公倍数
【例题】打开A、B、C每一个门阀,水就以各自不变的速度注入水槽。当三个阀门都打开时,注满水槽要1个小时;只打开A、C两个阀门,需要1.5小时;只打开B、C两个阀门,需要2小时。若只打开A、B两个阀门,要多久注满水槽。
A、1.1 B、1.15 C、1.2 D、1.25
【中公解析】选C。本题为多者合作问题,题干中只给出了时间,同时须求时间,适合用特值法。且I=PT可知,I为P、T倍数,因此I为1、1.5、2公倍数,所以设I=6,即1、1.5、2的最小公倍数。则ABC三者效率为6÷1=6;AC效率为6÷1.5=4;BC效率为6÷2=3;因此B的效率为6-4=2;A的效率为6-3=3。所以只打开AB两个阀门要6÷(3+2)=1.2,因此选C。
【总结】在多者合作问题中,若工作总量为若干数的公倍数,那么常设其为这若干个数的最小公倍数,进而求出效率。
2.多者合作问题常依据比例设效率为整数或直接设效率为1
【例题】某市有甲乙丙三个工程队,工作效率比为3:4:5。甲队单独完成A工程需要25天,丙队单独完成B工程需要9天。现由甲队负责B工程,乙队负责A工程,而丙队先帮甲队工作若干天后转去帮助乙队工作。如果希望两个工程同时开工同时结束,则丙队要帮乙队工作多少天?
【中公解析】本题为多者合作问题,题干中只给出了时间以及效率比,但是还要求时间符合特值法特征。为了保证整体计算尽量是整数,因此依据效率比为3:4:5,设甲乙丙效率分别为3、4、5。由于甲做A工程用了25天,所以A工程总量为3×25=75,同理B工程总量为5×9=45,则AB工程总量为120。依题意知,三人从开始到完工都未休息,因此总时间为120÷(3+4+5)=10天。所以乙做A工程做了4×10=40,则丙队做A工程(75-45)÷5=7天,所以答案为7天。
【总结】在多者合作问题中,若题目给出了效率比,则可以依据效率比设效率为整数,进而求出工作总量。
通过以上讲解,希望考生们可以掌握此类题型的解答方法,在行测考试中运用到位,取得高分。
相关考试备考资料:
设为首页 | 加入收藏 | 关于我们 | 联系方式 | 版权声明 | 招生代理 | 支付方式 | 网站地图 | 手机页面 | 友情链接 | 加入中公
Copyright©1999-2016 北京中公教育科技股份有限公司 .All Rights Reserved京ICP备10218183号 京ICP证100808号 京公网安备11010802020593号 出版物经营许可证新出发京批字第直130052号